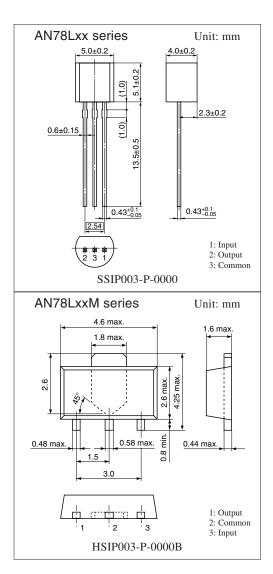
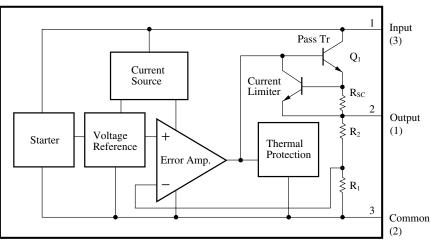
AN78Lxx/AN78LxxM Series

3-pin positive output voltage regulator (100 mA type)


Overview

The AN78Lxx series and the AN78LxxM series are 3pin fixed positive output type monolithic voltage regulator.


A stabilized fixed output voltage is obtained from an unstable DC input voltage without using any external parts. 12 types of fixed output voltage are available; 4V, 5V, 6V, 7V, 8V, 9V, 10V, 12V, 15V, 18V, 20V and 24V. They can be used widely as power circuits with a current capacity of up to 100mA.

Features

- No external components
- Output voltage: 4V, 5V, 6V, 7V, 8V, 9V, 10V, 12V, 15V, 18V, 20V, 24V
- Built-in overcurrent limit circuit
- Built-in thermal overload protection circuit

■ Block Diagram (AN78Lxx series)

Note) The number in () shows the pin number for the AN78LxxM series.

Absolute Maximum Ratings at $T_a = 25^{\circ}C$

Parameter		Symbol	Rating	Unit
Input voltage		V	35 *1	V
		VI	40 *2	v
Power dissipation		P _D	650 *3	mW
Operating ambient ten	nperature	T _{opr}	-30 to +80	°C
<u><u><u></u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	AN78Lxx series	T	-55 to +150	00
Storage temperature	AN78LxxM series	T _{stg}	-55 to +125	- °C

*1 AN78L04/M, AN78L05/M, AN78L06/M, AN78L07/M, AN78L08/M, AN78L09/M, AN78L10/M, AN78L12/M, AN78L15/M

*2 AN78L18/M, AN78L20/M, AN78L24/M

*3 Follow the derating curve. When T_j exceeds 150°C, the internal circuit cuts off the output.

AN78LxxM series is mounted on a standard board (glass epoxy: 20mm $\times 20$ mm $\times t1.7$ mm with Cu foil of 1 cm² or more).

Electrical Characteristics at T_a = 25°C

• AN78L04, AN78L04M (4V type)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Output voltage	Vo	$T_j = 25^{\circ}C$	3.84	4	4.16	V
Output voltage tolerance	Vo	$V_{\rm I}$ = 6.5 to 19V, $I_{\rm O}$ = 1 to 70mA	3.8		4.2	V
Line regulation	REGIN	$V_I = 6.5$ to 19V, $T_j = 25^{\circ}C$		50	145	mV
Line regulation	KEGIN	$V_I = 7$ to 19V, $T_j = 25^{\circ}C$		40	95	mV
Load regulation	DEC	$I_0 = 1$ to 100mA, $T_j = 25^{\circ}C$		10	55	mV
Load regulation	REGL	$I_0 = 1$ to 40mA, $T_j = 25^{\circ}C$		4.5	30	mV
Bias current	I _{Bias}	$T_j = 25^{\circ}C$		2	3	mA
Bias current fluctuation to input	$\Delta I_{Bias(IN)}$	$V_{I} = 7$ to 19V, $T_{j} = 25^{\circ}C$			1	mA
Bias current fluctuation to load	$\Delta I_{Bias(L)}$	$I_0 = 1$ to 40mA, $T_j = 25^{\circ}C$			0.1	mA
Output noise voltage	V_{no}	f = 10Hz to $100kHz$		40		μV
Ripple rejection ratio	RR	$V_{I} = 7$ to 17V, $I_{O} = 40$ mA, $f = 120$ Hz	48	58	_	dB
Minimum input/output voltage difference	V _{DIF(min)}	$T_j = 25^{\circ}C$		1.7		V
Output short-circuit current	I _{O(Short)}	$T_j = 25^{\circ}C, V_I = 35V$		140		mA
Output voltage temperature coefficient	$\Delta V_0/T_a$	$I_0 = 5mA, T_j = 0 \text{ to } 125^{\circ}C$		- 0.6		mV/°C

Note 1) The specified condition $T_j = 25^{\circ}C$ means that the test should be carried out within so short a test time (within 10ms) that the characteristic value drift due to the chip junction temperature rise can be ignored.

Note 2) Unless otherwise specified, $V_1 = 9V$, $I_0 = 40$ mA, $C_1 = 0.33\mu$ F, $C_0 = 0.1\mu$ F, $T_j = 0$ to 125°C (AN78L04) and $T_j = 0$ to 100°C (AN78L04M)

• AN78L05, AN78L05M (5V type)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Output voltage	Vo	$T_j = 25^{\circ}C$	4.8	5	5.2	V
Output voltage tolerance	Vo	$V_{\rm I}$ = 7.5 to 20V, $I_{\rm O}$ = 1 to 70mA	4.75	—	5.25	V
Line regulation	REGIN	$V_{\rm I}$ = 7.5 to 20V, $T_{\rm j}$ = 25°C		55	150	mV
Line regulation	KEUIN	$V_{I} = 8$ to 20V, $T_{j} = 25^{\circ}C$		45	100	mV
Load regulation	DEC	$I_0 = 1$ to 100mA, $T_j = 25^{\circ}C$		11	60	mV
	REGL	$I_0 = 1$ to 40mA, $T_j = 25^{\circ}C$		5	30	mV
Bias current	I _{Bias}	$T_j = 25^{\circ}C$		2	3	mA
Bias current fluctuation to input	$\Delta I_{Bias(IN)}$	$V_{I} = 8$ to 20V, $T_{j} = 25^{\circ}C$			1	mA
Bias current fluctuation to load	$\Delta I_{Bias(L)}$	$I_0 = 1$ to 40mA, $T_j = 25^{\circ}C$			0.1	mA
Output noise voltage	V_{no}	f = 10Hz to $100kHz$		40		μν
Ripple rejection ratio	RR	$V_1 = 8$ to 18V, $I_0 = 40$ mA, $f = 120$ Hz	47	57		dB
Minimum input/output voltage difference	V _{DIF(min)}	$T_j = 25^{\circ}C$		1.7		V
Output short-circuit current	I _{O(Short)}	$T_j = 25^{\circ}C, V_I = 35V$		140		mA
Output voltage temperature coefficient	$\Delta V_0/T_a$	$I_0 = 5mA, T_j = 0 \text{ to } 125^{\circ}C$		- 0.65		mV/°C

Note 1) The specified condition $T_j = 25^{\circ}C$ means that the test should be carried out within so short a test time (within 10ms) that the characteristic value drift due to the chip junction temperature rise can be ignored.

Note 2) Unless otherwise specified, $V_I = 10V$, $I_0 = 40$ mA, $C_I = 0.33\mu$ F, $C_0 = 0.1\mu$ F, $T_j = 0$ to 125° C (AN78L05) and $T_j = 0$ to 100° C (AN78L05M)

Parameter	Symbol	Conditions	Min	Тур	Мах	Unit
Output voltage	Vo	$T_j = 25^{\circ}C$	5.76	6	6.24	v
Output voltage tolerance	Vo	$V_I = 8.5$ to 21V, $I_O = 1$ to 70mA	5.7		6.3	v
Line regulation	REGIN	$V_I = 8.5$ to 21V, $T_j = 25^{\circ}C$		60	155	mV
Line regulation	KLOIN	$V_I = 9$ to 21V, $T_j = 25^{\circ}C$		50	105	mV
Load regulation	DEC	$I_0 = 1$ to 100mA, $T_j = 25^{\circ}C$		12	65	mV
	REG _L	$I_0 = 1$ to 40mA, $T_j = 25^{\circ}C$		5.5	35	mV
Bias current	I _{Bias}	$T_j = 25^{\circ}C$		2	3	mA
Bias current fluctuation to input	$\Delta I_{Bias(IN)}$	$V_{I} = 9$ to 21V, $T_{j} = 25^{\circ}C$			1	mA
Bias current fluctuation to load	$\Delta I_{Bias(L)}$	$I_0 = 1$ to 40mA, $T_j = 25^{\circ}C$		_	0.1	mA
Output noise voltage	V _{no}	f = 10Hz to $100kHz$		50		μν
Ripple rejection ratio	RR	$V_I = 9$ to 19V, $I_O = 40$ mA, $f = 120$ Hz	46	56		dB
Minimum input/output voltage difference	V _{DIF(min)}	$T_j = 25^{\circ}C$		1.7		v
Output short-circuit current	I _{O(Short)}	$T_j = 25^{\circ}C, V_I = 35V$		140		mA
Output voltage temperature coefficient	$\Delta V_0/T_a$	$I_0 = 5mA, T_j = 0 \text{ to } 125^{\circ}C$		- 0.7		mV/°C

• AN78L06, AN78L06M (6V type)

Note 1) The specified condition $T_j = 25^{\circ}C$ means that the test should be carried out within so short a test time (within 10ms) that the characteristic value drift due to the chip junction temperature rise can be ignored.

Note 2) Unless otherwise specified, $V_I = 11V$, $I_O = 40$ mA, $C_I = 0.33\mu$ F, $C_O = 0.1\mu$ F, $T_j = 0$ to 125° C (AN78L06) and $T_j = 0$ to 100° C (AN78L06M)

■ Electrical Characteristics at T_a = 25°C (continued)

• AN78L07, AN78L07M (7V type)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Output voltage	Vo	$T_j = 25^{\circ}C$	6.72	7	7.28	V
Output voltage tolerance	Vo	$V_I = 9.5$ to 22V, $I_O = 1$ to 70mA	6.65		7.35	V
Line regulation	REGIN	$V_I = 9.5$ to 22V, $T_j = 25^{\circ}C$		70	165	mV
Line regulation	KLOIN	$V_I = 10$ to 22V, $T_j = 25^{\circ}C$		60	115	mV
Load regulation	DEC	$I_0 = 1$ to 100mA, $T_j = 25^{\circ}C$		13	75	mV
	REGL	$I_0 = 1$ to 40mA, $T_j = 25^{\circ}C$		6	35	mV
Bias current	I _{Bias}	$T_j = 25^{\circ}C$		2	3	mA
Bias current fluctuation to input	$\Delta I_{Bias(IN)}$	$V_{I} = 10$ to 22V, $T_{j} = 25^{\circ}C$			1	mA
Bias current fluctuation to load	$\Delta I_{Bias(L)}$	$I_0 = 1$ to 40mA, $T_j = 25^{\circ}C$			0.1	mA
Output noise voltage	V_{no}	f = 10Hz to $100kHz$		50		μV
Ripple rejection ratio	RR	$V_I = 10$ to 20V, $I_O = 40$ mA, $f = 120$ Hz	45	55		dB
Minimum input/output voltage difference	V _{DIF(min)}	$T_j = 25^{\circ}C$		1.7		V
Output short-circuit current	I _{O(Short)}	$T_j = 25^{\circ}C, V_I = 35V$		140		mA
Output voltage temperature coefficient	$\Delta V_0/T_a$	$I_0 = 5mA$, $T_j = 0$ to $125^{\circ}C$		- 0.75		mV/°C

Note 1) The specified condition $T_j = 25^{\circ}C$ means that the test should be carried out within so short a test time (within 10ms) that the characteristic value drift due to the chip junction temperature rise can be ignored.

Note 2) Unless otherwise specified, $V_I = 12V$, $I_O = 40$ mA, $C_I = 0.33\mu$ F, $C_O = 0.1\mu$ F, $T_j = 0$ to 125° C (AN78L07) and $T_j = 0$ to 100° C (AN78L07M)

Parameter	Symbol	Conditions	Min	Тур	Мах	Unit
Output voltage	Vo	$T_j = 25^{\circ}C$	7.7	8	8.3	V
Output voltage tolerance	Vo	$V_{\rm I}$ = 10.5 to 23V, $I_{\rm O}$ = 1 to 70mA	7.6		8.4	V
Line regulation	REG _{IN}	$V_{\rm I}$ = 10.5 to 23V, $T_{\rm j}$ = 25°C		80	175	mV
Line regulation	KEO IN	$V_{I} = 11$ to 23V, $T_{j} = 25^{\circ}C$		70	125	mV
T and manufaction	DEC	$I_0 = 1$ to 100mA, $T_j = 25^{\circ}C$		15	80	mV
Load regulation	REGL	$I_0 = 1$ to 40mA, $T_j = 25^{\circ}C$		7	40	mV
Bias current	I _{Bias}	$T_j = 25^{\circ}C$		2	3	mA
Bias current fluctuation to input	$\Delta I_{Bias(IN)}$	$V_{I} = 11$ to 23V, $T_{j} = 25^{\circ}C$			1	mA
Bias current fluctuation to load	$\Delta I_{Bias(L)}$	$I_0 = 1$ to 40mA, $T_j = 25^{\circ}C$			0.1	mA
Output noise voltage	V_{no}	f = 10Hz to $100kHz$		60		μV
Ripple rejection ratio	RR	$V_{I} = 11$ to 21V, $I_{O} = 40$ mA, $f = 120$ Hz	44	54		dB
Minimum input/output voltage difference	V _{DIF(min)}	$T_j = 25^{\circ}C$		1.7		V
Output short-circuit current	$I_{O(Short)}$	$T_j = 25^{\circ}C, V_I = 35V$		140		mA
Output voltage temperature coefficient	$\Delta V_{O}/T_{a}$	$I_0 = 5mA$, $T_j = 0$ to $125^{\circ}C$		- 0.8		mV/°C

• AN78L08, AN78L08M (8V type)

Note 1) The specified condition $T_j = 25^{\circ}C$ means that the test should be carried out within so short a test time (within 10ms) that the characteristic value drift due to the chip junction temperature rise can be ignored.

Note 2) Unless otherwise specified, $V_I = 14V$, $I_O = 40$ mA, $C_I = 0.33\mu$ F, $C_O = 0.1\mu$ F, $T_j = 0$ to 125°C (AN78L08) and $T_j = 0$ to 100°C (AN78L08M)

- Electrical Characteristics at T_a = 25°C (continued)
- AN78L09, AN78L09M (9V type)

Parameter	Symbol	Conditions	Min	Тур	Мах	Unit
Output voltage	Vo	$T_j = 25^{\circ}C$	8.64	9	9.35	V
Output voltage tolerance	Vo	$V_I = 11.5$ to 24V, $I_O = 1$ to 70mA	8.55		9.45	V
Line regulation	REGIN	$V_I = 11.5$ to 24V, $T_j = 25^{\circ}C$		90	190	mV
Line regulation	KLOIN	$V_I = 12 \text{ to } 24V, T_j = 25^{\circ}C$		80	140	mV
Load regulation	DEC	$I_0 = 1$ to 100mA, $T_j = 25^{\circ}C$		16	85	mV
	REG _L	$I_0 = 1$ to 40mA, $T_j = 25^{\circ}C$		8	45	mV
Bias current	I _{Bias}	$T_j = 25^{\circ}C$		2	3	mA
Bias current fluctuation to input	$\Delta I_{Bias(IN)}$	$V_{I} = 12 \text{ to } 24V, T_{j} = 25^{\circ}C$			1	mA
Bias current fluctuation to load	$\Delta I_{Bias(L)}$	$I_0 = 1$ to 40mA, $T_j = 25^{\circ}C$			0.1	mA
Output noise voltage	V _{no}	f = 10Hz to $100kHz$		65		μV
Ripple rejection ratio	RR	$V_I = 12$ to 22V, $I_O = 40$ mA, $f = 120$ Hz	43	53		dB
Minimum input/output voltage difference	V _{DIF(min)}	$T_j = 25^{\circ}C$		1.7		V
Output short-circuit current	I _{O(Short)}	$T_j = 25^{\circ}C, V_I = 35V$		140		mA
Output voltage temperature coefficient	$\Delta V_0/T_a$	$I_0 = 5mA$, $T_j = 0$ to $125^{\circ}C$		- 0.85		mV/°C

Note 1) The specified condition $T_j = 25^{\circ}C$ means that the test should be carried out within so short a test time (within 10ms) that the characteristic value drift due to the chip junction temperature rise can be ignored.

Note 2) Unless otherwise specified, $V_I = 15V$, $\hat{I}_0 = 40$ mA, $C_I = 0.33\mu$ F, $C_0 = 0.1\mu$ F, $T_j = 0$ to 125° C (AN78L09) and $T_j = 0$ to 100° C (AN78L09M)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Output voltage	Vo	$T_j = 25^{\circ}C$	9.6	10	10.4	V
Output voltage tolerance	Vo	$V_{I} = 12.5$ to 25V, $I_{O} = 1$ to 70mA	9.5		10.5	V
Line regulation	REGIN	$V_I = 12.5$ to 25V, $T_j = 25^{\circ}C$		100	210	mV
	KEUIN	$V_{I} = 13$ to 25V, $T_{j} = 25^{\circ}C$		90	160	mV
Load regulation	DEC	$I_0 = 1$ to 100mA, $T_j = 25^{\circ}C$	—	17	90	mV
	REG _L	$I_0 = 1$ to 40mA, $T_j = 25^{\circ}C$		9	45	mV
Bias current	I _{Bias}	$T_j = 25^{\circ}C$		2	3	mA
Bias current fluctuation to input	$\Delta I_{Bias(IN)}$	$V_{I} = 13$ to 25V, $T_{j} = 25^{\circ}C$			1	mA
Bias current fluctuation to load	$\Delta I_{Bias(L)}$	$I_0 = 1$ to 40mA, $T_j = 25^{\circ}C$			0.1	mA
Output noise voltage	V_{no}	f = 10Hz to $100kHz$		70		μV
Ripple rejection ratio	RR	$V_{I} = 13$ to 23V, $I_{O} = 40$ mA, $f = 120$ Hz	42	52		dB
Minimum input/output voltage difference	V _{DIF(min)}	$T_j = 25^{\circ}C$		1.7		V
Output short-circuit current	$I_{O(Short)}$	$T_j = 25^{\circ}C, V_I = 35V$		140		mA
Output voltage temperature coefficient	$\Delta V_0/T_a$	$I_0 = 5mA, T_j = 0 \text{ to } 125^{\circ}C$		- 0.9		mV/°C

• AN78L10, AN78L10M (10V type)

Note 1) The specified condition $T_j = 25^{\circ}C$ means that the test should be carried out within so short a test time (within 10ms) that the characteristic value drift due to the chip junction temperature rise can be ignored.

Note 2) Unless otherwise specified, $V_I = 16V$, $I_0 = 40$ mA, $C_I = 0.33\mu$ F, $C_0 = 0.1\mu$ F, $T_j = 0$ to 125° C (AN78L10) and $T_j = 0$ to 100° C (AN78L10M)

• AN78L12, AN78L12M (12V type)

Parameter	Symbol	Conditions	Min	Тур	Мах	Unit
Output voltage	Vo	$T_j = 25^{\circ}C$	11.5	12	12.5	V
Output voltage tolerance	Vo	$V_{\rm I}$ = 14.5 to 27V, $I_{\rm O}$ = 1 to 70mA	11.4		12.6	V
Line regulation	REGIN	$V_{\rm I}$ = 14.5 to 27V, $T_{\rm j}$ = 25°C		120	250	mV
Line regulation	KLOIN	$V_I = 15$ to 27V, $T_j = 25^{\circ}C$		100	200	mV
Load regulation	DEC	$I_0 = 1$ to 100mA, $T_j = 25^{\circ}C$		20	100	mV
	REGL	$I_0 = 1$ to 40mA, $T_j = 25^{\circ}C$		10	50	mV
Bias current	I _{Bias}	$T_j = 25^{\circ}C$		2	3.5	mA
Bias current fluctuation to input	$\Delta I_{Bias(IN)}$	$V_I = 15$ to 27V, $T_j = 25^{\circ}C$			1	mA
Bias current fluctuation to load	$\Delta I_{Bias(L)}$	$I_0 = 1$ to 40mA, $T_j = 25^{\circ}C$			0.1	mA
Output noise voltage	V_{no}	f = 10Hz to $100kHz$		80		μV
Ripple rejection ratio	RR	$V_{I} = 15$ to 25V, $I_{O} = 40$ mA, $f = 120$ Hz	40	50		dB
Minimum input/output voltage difference	V _{DIF(min)}	$T_j = 25^{\circ}C$		1.7		V
Output short-circuit current	I _{O(Short)}	$T_j = 25^{\circ}C, V_I = 35V$		140		mA
Output voltage temperature coefficient	$\Delta V_0/T_a$	$I_0 = 5mA$, $T_j = 0$ to $125^{\circ}C$		-1		mV/°C

Note 1) The specified condition $T_j = 25^{\circ}C$ means that the test should be carried out within so short a test time (within 10ms) that the characteristic value drift due to the chip junction temperature rise can be ignored.

Note 2) Unless otherwise specified, $V_I = 19V$, $I_O = 40$ mA, $C_I = 0.33\mu$ F, $C_O = 0.1\mu$ F, $T_j = 0$ to 125° C (AN78L12) and $T_j = 0$ to 100° C (AN78L12M)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Output voltage	Vo	$T_j = 25^{\circ}C$	14.4	15	15.6	V
Output voltage tolerance	Vo	$V_{\rm I}$ = 17.5 to 30V, $I_{\rm O}$ = 1 to 70mA	14.25		15.75	V
Line regulation	REGIN	$V_I = 17.5$ to 30V, $T_j = 25^{\circ}C$		130	300	mV
Line regulation	KLO _{IN}	$V_{I} = 18$ to 30V, $T_{j} = 25^{\circ}C$		110	250	mV
Load regulation	DEC	$I_0 = 1$ to 100mA, $T_j = 25^{\circ}C$		25	150	mV
	REGL	$I_0 = 1$ to 40mA, $T_j = 25^{\circ}C$		12	75	mV
Bias current	I _{Bias}	$T_j = 25^{\circ}C$		2	3.5	mA
Bias current fluctuation to input	$\Delta I_{Bias(IN)}$	$V_{I} = 18$ to 30V, $T_{j} = 25^{\circ}C$			1	mA
Bias current fluctuation to load	$\Delta I_{Bias(L)}$	$I_0 = 1 \text{ to } 40 \text{mA}, T_j = 25^{\circ}\text{C}$			0.1	mA
Output noise voltage	V _{no}	f = 10Hz to $100kHz$		90		μV
Ripple rejection ratio	RR	$V_I = 18$ to 28V, $I_O = 40$ mA, $f = 120$ Hz	38	48		dB
Minimum input/output voltage difference	V _{DIF(min)}	$T_j = 25^{\circ}C$		1.7		v
Output short-circuit current	I _{O(Short)}	$T_j = 25^{\circ}C, V_I = 35V$		140		mA
Output voltage temperature coefficient	$\Delta V_0/T_a$	$I_0 = 5mA, T_j = 0 \text{ to } 125^{\circ}C$		-1.3		mV/°C

• AN78L15, AN78L15M (15V type)

Note 1) The specified condition $T_j = 25^{\circ}C$ means that the test should be carried out within so short a test time (within 10ms) that the characteristic value drift due to the chip junction temperature rise can be ignored.

Note 2) Unless otherwise specified, $V_I = 23V$, $\hat{I_0} = 40$ mA, $C_I = 0.33\mu$ F, $C_0 = 0.1\mu$ F, $T_j = 0$ to 125° C (AN78L15) and $T_j = 0$ to 100° C (AN78L15M)

• AN78L18, AN78L18M (18V type)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Output voltage	Vo	$T_j = 25^{\circ}C$	17.3	18	18.7	V
Output voltage tolerance	Vo	$V_{I} = 20.5$ to 33V, $I_{O} = 1$ to 70mA	17.1		18.9	V
Line regulation	REGIN	$V_I = 20.5$ to 33V, $T_j = 25^{\circ}C$		45	300	mV
Line regulation	KLOIN	$V_I = 21$ to 33V, $T_j = 25^{\circ}C$		35	250	mV
Load regulation	DEC	$I_0 = 1$ to 100mA, $T_j = 25^{\circ}C$		30	170	mV
	REGL	$I_0 = 1$ to 40mA, $T_j = 25^{\circ}C$		15	85	mV
Bias current	I _{Bias}	$T_j = 25^{\circ}C$		2	3.5	mA
Bias current fluctuation to input	$\Delta I_{Bias(IN)}$	$V_{I} = 21$ to 33V, $T_{j} = 25^{\circ}C$			1	mA
Bias current fluctuation to load	$\Delta I_{Bias(L)}$	$I_0 = 1$ to 40mA, $T_j = 25^{\circ}C$			0.1	mA
Output noise voltage	V _{no}	f = 10Hz to $100kHz$	—	150	—	μV
Ripple rejection ratio	RR	$V_{I} = 21$ to 31V, $I_{O} = 40$ mA, $f = 120$ Hz	36	46		dB
Minimum input/output voltage difference	V _{DIF(min)}	$T_j = 25^{\circ}C$		1.7		V
Output short-circuit current	I _{O(Short)}	$T_j = 25^{\circ}C, V_I = 35V$		140		mA
Output voltage temperature coefficient	$\Delta V_0/T_a$	$I_0 = 5mA, T_j = 0 \text{ to } 125^{\circ}C$		-1.5		mV/°C

Note 1) The specified condition $T_j = 25^{\circ}C$ means that the test should be carried out within so short a test time (within 10ms) that the characteristic value drift due to the chip junction temperature rise can be ignored.

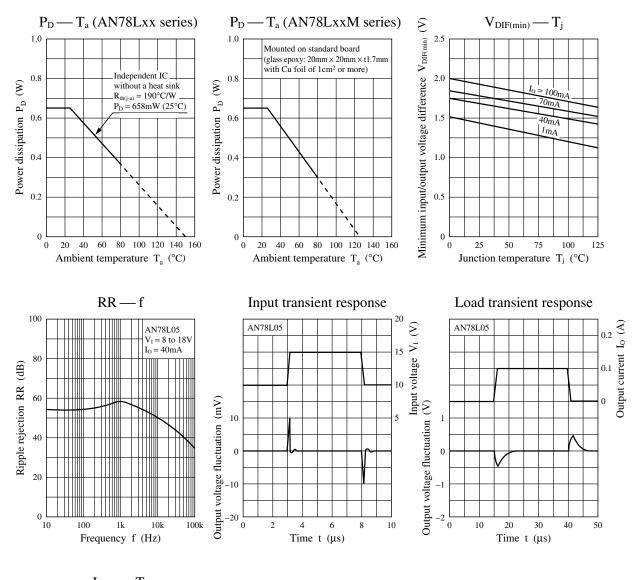
Note 2) Unless otherwise specified, $V_I = 27V$, $\hat{I}_0 = 40$ mA, $C_I = 0.33\mu$ F, $C_0 = 0.1\mu$ F, $T_j = 0$ to 125° C (AN78L18) and $T_j = 0$ to 100° C (AN78L18M)

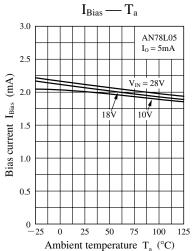
Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Output voltage	Vo	$T_j = 25^{\circ}C$	19.2	20	20.8	v
Output voltage tolerance	Vo	$V_{\rm I}{=}22.5$ to 35V, $I_{\rm O}{=}1$ to 70mA	19		21	v
Line regulation	REG _{IN}	$V_I = 22.5$ to 35V, $T_j = 25^{\circ}C$		50	300	mV
Line regulation	KEOIN	$V_I = 23$ to 35V, $T_j = 25^{\circ}C$		40	250	mV
T d	DEC	$I_0 = 1$ to 100mA, $T_j = 25^{\circ}C$		35	180	mV
Load regulation	REGL	$I_0 = 1$ to 40mA, $T_j = 25^{\circ}C$		17	90	mV
Bias current	I _{Bias}	$T_j = 25^{\circ}C$		2	3.5	mA
Bias current fluctuation to input	$\Delta I_{Bias(IN)}$	$V_I = 23$ to 35V, $T_j = 25^{\circ}C$	—		1	mA
Bias current fluctuation to load	$\Delta I_{Bias(L)}$	$I_0 = 1$ to 40mA, $T_j = 25^{\circ}C$		—	0.1	mA
Output noise voltage	V_{no}	f = 10Hz to $100kHz$		170		μV
Ripple rejection ratio	RR	$V_{I} = 23$ to 33V, $I_{O} = 40$ mA, $f = 120$ Hz	34	44	_	dB
Minimum input/output voltage difference	V _{DIF(min)}	$T_j = 25^{\circ}C$		1.7		V
Output short-circuit current	I _{O(Short)}	$T_j = 25^{\circ}C, V_I = 35V$		140		mA
Output voltage temperature coefficient	$\Delta V_0/T_a$	$I_0 = 5mA$, $T_j = 0$ to $125^{\circ}C$		-1.7		mV/°C

• AN78L20, AN78L20M (20V type)

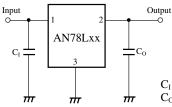
Note 1) The specified condition $T_j = 25^{\circ}C$ means that the test should be carried out within so short a test time (within 10ms) that the characteristic value drift due to the chip junction temperature rise can be ignored.

Note 2) Unless otherwise specified, $V_I = 29V$, $I_O = 40$ mA, $C_I = 0.33\mu$ F, $C_O = 0.1\mu$ F, $T_j = 0$ to 125°C (AN78L20) and $T_j = 0$ to 100°C (AN78L20M)

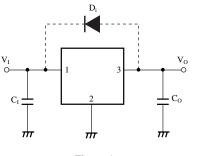

• AN78L24, AN78L24M (24V type)


Parameter	Symbol	Conditions	Min	Тур	Мах	Unit
Output voltage	Vo	$T_j = 25^{\circ}C$	23	24	25	V
Output voltage tolerance	Vo	$V_{I} = 26.5$ to 39V, $I_{O} = 1$ to 70mA	22.8		25.2	V
Line regulation	REGIN	$V_{I} = 26.5$ to 39V, $T_{j} = 25^{\circ}C$		60	300	mV
		$V_{I} = 27$ to 39V, $T_{j} = 25^{\circ}C$		50	250	mV
Load regulation	REGL	$I_0 = 1$ to 100mA, $T_j = 25^{\circ}C$		40	200	mV
		$I_0 = 1$ to 40mA, $T_j = 25^{\circ}C$		20	100	mV
Bias current	I _{Bias}	$T_j = 25^{\circ}C$		2	3.5	mA
Bias current fluctuation to input	$\Delta I_{Bias(IN)}$	$V_{I} = 27$ to 39V, $T_{j} = 25^{\circ}C$			1	mA
Bias current fluctuation to load	$\Delta I_{Bias(L)}$	$I_0 = 1$ to 40mA, $T_j = 25^{\circ}C$			0.1	mA
Output noise voltage	V _{no}	f = 10Hz to $100kHz$		200		μV
Ripple rejection ratio	RR	$V_I = 27$ to 37V, $I_O = 40$ mA, $f = 120$ Hz	34	44		dB
Minimum input/output voltage difference	V _{DIF(min)}	$T_j = 25^{\circ}C$		1.7		V
Output short-circuit current	I _{O(Short)}	$T_j = 25^{\circ}C, V_I = 35V$		140		mA
Output voltage temperature coefficient	$\Delta V_0/T_a$	$I_0 = 5mA, T_j = 0 \text{ to } 125^{\circ}C$		-2		mV/°C

Note 1) The specified condition $T_j = 25^{\circ}C$ means that the test should be carried out within so short a test time (within 10ms) that the characteristic value drift due to the chip junction temperature rise can be ignored.


Note 2) Unless otherwise specified, $V_I = 33V$, $\hat{I}_O = 40$ mA, $C_I = 0.33\mu$ F, $C_O = 0.1\mu$ F, $T_j = 0$ to 125°C (AN78L24) and $T_j = 0$ to 100°C (AN78L24M)

Main Characteristics

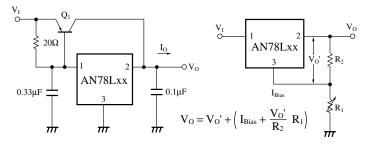

Basic Regulator Circuit

 C_I is necessary when the input line is long. C_O improves the transient response.

■ Usage Notes

1. Cautions for a basic circuit

- $\begin{array}{l} C_{I}: \enskip \text{When a wiring from a smoothing circuit to a three-pin regulator} \\ \text{is long, it is likely to oscillate at output. A capacitor of 0.1 μF to} \\ 0.47 μF should be connected near an input pin. \end{array}$
- C_0 : When any sudden change of load current is likely to occur, connect an electrolytic capacitor of 10μ F to 100μ F to improve a transitional response of output voltage.
- D_i: Normally unnecessary. But add it in the case that there is a residual voltage at the output capacitor Co even after switching off the supply power because a current is likely to flow into an output pin of the IC and damage the IC.


- 2. Other caution items
- 1) Short-circuit between the input pin and GND pin

If the input pin is short-circuitted to GND or is cut off when a large capacitance capacitor has been connected to the IC's load, a voltage of a capacitor connected to an output pin is applied between input/output of the IC and this likely results in damage of the IC. It is necessary, therefore, to connect a diode, as shown in figure 2, to counter the reverse bias between input/output pins. Figure 2

2) Floating of GND pin

If a GND pin is made floating in an operating mode, an unstabilized input voltage is outputted. In this case, a thermal protection circuit inside the IC does not normally operate. In this state, if the load is short-circuited or overloaded, it is likely to damage the IC.

Application Circuit Examples

Note) V_{0} varies due to sample to sample variation of I_{Bias} . Never fail to adjust individually with R_{1} .